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PURPOSE: DERIVE ANALYTIC RESULTS FOR CEMM VERIFICATION TASKS

EXTENDED-MHD EFFECTS ON THE TEARING MODE:

TWO-FLUID HALL (DOES NOT REQUIRE DENSITY OR TEMPERATURE EQUI-
LIBRIUM GRADIENTS).

TWO-FLUID DIAMAGNETIC (WITH INDEPENDENT DENSITY, ION TEMPER-
ATURE AND ELECTRON TEMPERATURE EQUILIBRIUM GRADIENTS).

PARALLEL CLOSURES (p; —p. AND g)).



BASIC TWO-FLUID SYSTEM, NEGLECTING PARALLEL CLOSURES:
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The resistivity, n, will be taken as constant and the ion gyroviscous stress tensor and

the diamagnetic perpendicular heat fluxes are:
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EQUILIBRIUM WITH FLOW IN ONE-DIMENSIONAL SLAB GEOMETRY:

ng = no(x)
P = pLO(x)
Pe0 = peO(aj>

) = ug(x) = ugy(z)e, + up.(z)e.,
By = By(z) = By,(x)e, + By.(z)e.,

jo =Jjo(x) = —By.(v)e, + By, (x)e..

%Bg () + peo(x) + po(x) — %[ugy(az)%(w) — () By, ()] = constant .






TWO-FLUID TEARING MODES IN THE ABSENCE OF EQUILIBRIUM FLOW
AND DENSITY OR TEMPERATURE GRADIENTS:

Consider the simplest case of a static equilibrium (uy = 0) with constant ng, p,o and p,.
From equilibrium force balance, the magnitude of the magnetic field B, is constant too.

No diamagnetic effects, only the two-fluid Hall effect retained.

Sheet pinch equilibrium magnetic field profile:
x

By, () = By, tanh(L) ,

Bo.(x) = [B} — B ()] .

Linear stability analysis for perturbed quantities independent of z and periodic in y:

Q(x,t) = Qo(w) + Q1(x) exp(iky + ) .



DIMENSIONLESS PARAMETERS OF THE PROBLEM:
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which is the basic expansion parameter.
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which is the eigenvalue of the problem.
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to be treated as arbitrary, ranging from the single-fluid limit kd, — 0 to kd, = O(1).



kL,

whose allowed range will be such that the normalized instability index,

A - T4 BLOH = BL(0-) _ T0/4

— 27TF(3/4> k3/2L1/2 BlT(()) — 7TF(3/4) [(kL)_5/2 _ (kjL>—1/2] 7

is positive and comparable to or less than unity. Only the limit A/(kL) > 1 is excluded.

2(p€0 + pLO)
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which will be required to satisfy ¢/ < 3 < 1. Thus the present analysis excludes
the very low or zero beta limits, but covers the regime of interest for magnetic fusion
plasmas. Within this range of applicability, and for A'(kL) < 1, our dispersion relation

is independent of §.



HALL-TEARING DISPERSION RELATION:

Under the above applicability conditions:
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where f is the function of a single variable
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having the asymptotic behaviors f(w) — 1 for w < 1 and f(w) — w™"? for w > 1.



This expression defines implicitly a normalized growth rate of the form:
€, = F(&,, kd,)
or
e, =AN? Fe,AN% kd,) ,

where F' is a function of two variables with the asymptotic behaviors

F(v,w) — 03 for w < v"° and F(v,w) — v?w? for w>> v'/°,

Thus,
€y = 6%/5A’4/5 for  kd, < 6717/5A/_2/5
and

€ = 6717/2(kdb)1/2A/ for  kd,> 671]/5A/_2/5 .



ANALYTICAL DISPERSION RELATION

1/2
) . ~ .l'
€y (€n, kd;) - &/ 4f (‘[ d; 1“‘*) Erji' 4

. nk i y A’ k1A ] 1— (kL)?
€y = — €y = . A= — — ~ 0.9
pocaepA”? kcaep A C(kL)'/? (kL)>/2
1 SR
08 B \
o 0.6+ \ 1
! L4
— [AND
S— 04 \ i
0.2} ~_
O =1 0 I 1 2 -2
10 10 10 10
8 =




OUTER REGION NORMAL MODES
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independent of kd,;
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INNER REGION NORNAL MODES
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Two well-separated inner regions
for kd;/el/® =10 (blue case):
1) Innermost resistive layer, kd,

2) Intermediate layer, kd,
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BETA EFFECTS
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